A network connecting Runx2, SATB2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program.
نویسندگان
چکیده
Induced osteogenesis includes a program of microRNAs (miRs) to repress the translation of genes that act as inhibitors of bone formation. How expression of bone-related miRs is regulated remains a compelling question. Here we report that Runx2, a transcription factor essential for osteoblastogenesis, negatively regulates expression of the miR cluster 23a∼27a∼24-2. Overexpression, reporter, and chromatin immunoprecipitation assays established the presence of a functional Runx binding element that represses expression of these miRs. Consistent with this finding, exogenous expression of each of the miRs suppressed osteoblast differentiation, whereas antagomirs increased bone marker expression. The biological significance of Runx2 repression of this miR cluster is that each miR directly targets the 3' UTR of SATB2, which is known to synergize with Runx2 to facilitate bone formation. The findings suggest Runx2-negative regulation of multiple miRs by a feed-forward mechanism to cause derepression of SATB2 to promote differentiation. We find also that miR-23a represses Runx2 in the terminally differentiated osteocyte, representing a feedback mechanism to attenuate osteoblast maturation. We provide direct evidence for an interdependent relationship among transcriptional inhibition of the miR cluster by Runx2, translational repression of Runx2 and of SATB2 by the cluster miRs during progression of osteoblast differentiation. Furthermore, miR cluster gain of function (i.e., inhibition of osteogenesis) is rescued by the exogenous expression of SATB2. Taken together, we have established a regulatory network with a central role for the miR cluster 23a∼27a∼24-2 in both progression and maintenance of the osteocyte phenotype.
منابع مشابه
MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-β signalling in osteoblasts
Osteocytes are the terminally differentiated cell type of the osteoblastic lineage and have important functions in skeletal homeostasis. Although the transcriptional regulation of osteoblast differentiation has been well characterized, the factors that regulate differentiation of osteocytes from mature osteoblasts are poorly understood. Here we show that miR-23a∼27a∼24-2 (miR-23a cluster) promo...
متن کاملmiR-23a impairs bone differentiation in osteosarcoma via down-regulation of GJA1
Osteosarcoma is the most common type of bone cancer in children and adolescents. Impaired differentiation of osteoblast cells is a distinguishing feature of this aggressive disease. As improvements in survival outcomes have largely plateaued, better understanding of the bone differentiation program may provide new treatment approaches. The miRNA cluster miR-23a~27a~24-2, particularly miR-23a, h...
متن کاملA double feedback loop mediated by microRNA-23a/27a/24-2 regulates M1 versus M2 macrophage polarization and thus regulates cancer progression
In response to microenvironmental signals, macrophages undergo different types of activation, including the "classic" pro-inflammatory phenotype (also called M1) and the "alternative" anti-inflammatory phenotype (also called M2). Macrophage polarized activation has profound effects on immune and inflammatory responses, but mechanisms underlying the various types of macrophage is still in its in...
متن کاملThe NF-κB p65/miR-23a-27a-24 cluster is a target for leukemia treatment
p65 is a transcription factor that is involved in many physiological and pathologic processes. Here we report that p65 strongly binds to the miR-23a-27a-24 cluster promoter to up-regulate its expression. As bone marrow-derived cells differentiate into red blood cells in vitro, p65/miR-23a-27a-24 cluster expression increases sharply and then declines before the appearance of red blood cells, sug...
متن کاملA program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2.
Lineage progression in osteoblasts and chondrocytes is stringently controlled by the cell-fate-determining transcription factor Runx2. In this study, we directly addressed whether microRNAs (miRNAs) can control the osteogenic activity of Runx2 and affect osteoblast maturation. A panel of 11 Runx2-targeting miRNAs (miR-23a, miR-30c, miR-34c, miR-133a, miR-135a, miR-137, miR-204, miR-205, miR-217...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 46 شماره
صفحات -
تاریخ انتشار 2010